Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 31(3): 404-412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38499830

RESUMO

Cytosine DNA methylation is a highly conserved epigenetic mark in eukaryotes. Although the role of DNA methylation at gene promoters and repetitive elements has been extensively studied, the function of DNA methylation in other genomic contexts remains less clear. In the nucleus of mammalian cells, the genome is spatially organized at different levels, and strongly influences myriad genomic processes. There are a number of factors that regulate the three-dimensional (3D) organization of the genome, with the CTCF insulator protein being among the most well-characterized. Pertinently, CTCF binding has been reported as being DNA methylation-sensitive in certain contexts, perhaps most notably in the process of genomic imprinting. Therefore, it stands to reason that DNA methylation may play a broader role in the regulation of chromatin architecture. Here we summarize the current understanding that is relevant to both the mammalian DNA methylation and chromatin architecture fields and attempt to assess the extent to which DNA methylation impacts the folding of the genome. The focus is in early embryonic development and cellular transitions when the epigenome is in flux, but we also describe insights from pathological contexts, such as cancer, in which the epigenome and 3D genome organization are misregulated.


Assuntos
Metilação de DNA , Proteínas Repressoras , Animais , Proteínas Repressoras/metabolismo , Fator de Ligação a CCCTC/metabolismo , Impressão Genômica , Cromatina , Mamíferos/genética
2.
Nat Struct Mol Biol ; 31(1): 102-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177678

RESUMO

As embryonic stem cells (ESCs) transition from naive to primed pluripotency during early mammalian development, they acquire high DNA methylation levels. During this transition, the germline is specified and undergoes genome-wide DNA demethylation, while emergence of the three somatic germ layers is preceded by acquisition of somatic DNA methylation levels in the primed epiblast. DNA methylation is essential for embryogenesis, but the point at which it becomes critical during differentiation and whether all lineages equally depend on it is unclear. Here, using culture modeling of cellular transitions, we found that DNA methylation-free mouse ESCs with triple DNA methyltransferase knockout (TKO) progressed through the continuum of pluripotency states but demonstrated skewed differentiation abilities toward neural versus other somatic lineages. More saliently, TKO ESCs were fully competent for establishing primordial germ cell-like cells, even showing temporally extended and self-sustained capacity for the germline fate. By mapping chromatin states, we found that neural and germline lineages are linked by a similar enhancer dynamic upon exit from the naive state, defined by common sets of transcription factors, including methyl-sensitive ones, that fail to be decommissioned in the absence of DNA methylation. We propose that DNA methylation controls the temporality of a coordinated neural-germline axis of the preferred differentiation route during early development.


Assuntos
Metilação de DNA , Células-Tronco Embrionárias , Animais , Camundongos , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias Murinas , Células Germinativas/metabolismo , Camadas Germinativas/metabolismo , Mamíferos/metabolismo
3.
J Cell Sci ; 136(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655670

RESUMO

Genomes comprise a large fraction of repetitive sequences folded into constitutive heterochromatin, which protect genome integrity and cell identity. De novo formation of heterochromatin during preimplantation development is an essential step for preserving the ground-state of pluripotency and the self-renewal capacity of embryonic stem cells (ESCs). However, the molecular mechanisms responsible for the remodeling of constitutive heterochromatin are largely unknown. Here, we identify that DAXX, an H3.3 chaperone essential for the maintenance of mouse ESCs in the ground state, accumulates in pericentromeric regions independently of DNA methylation. DAXX recruits PML and SETDB1 to promote the formation of heterochromatin, forming foci that are hallmarks of ground-state ESCs. In the absence of DAXX or PML, the three-dimensional (3D) architecture and physical properties of pericentric and peripheral heterochromatin are disrupted, resulting in de-repression of major satellite DNA, transposable elements and genes associated with the nuclear lamina. Using epigenome editing tools, we observe that H3.3, and specifically H3.3K9 modification, directly contribute to maintaining pericentromeric chromatin conformation. Altogether, our data reveal that DAXX is crucial for the maintenance and 3D organization of the heterochromatin compartment and protects ESC viability.

4.
Nucleic Acids Res ; 51(19): 10292-10308, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37650637

RESUMO

Epigenetic mechanisms are essential to establish and safeguard cellular identities in mammals. They dynamically regulate the expression of genes, transposable elements and higher-order chromatin structures. Consequently, these chromatin marks are indispensable for mammalian development and alterations often lead to disease, such as cancer. Bivalent promoters are especially important during differentiation and development. Here we used a genetic screen to identify new regulators of a bivalent repressed gene. We identify BEND3 as a regulator of hundreds of bivalent promoters, some of which it represses, and some of which it activates. We show that BEND3 is recruited to a CpG-containg consensus site that is present in multiple copies in many bivalent promoters. Besides having direct effect on the promoters it binds, the loss of BEND3 leads to genome-wide gains of DNA methylation, which are especially marked at regions normally protected by the TET enzymes. DNA hydroxymethylation is reduced in Bend3 mutant cells, possibly as consequence of altered gene expression leading to diminished alpha-ketoglutarate production, thus lowering TET activity. Our results clarify the direct and indirect roles of an important chromatin regulator, BEND3, and, more broadly, they shed light on the regulation of bivalent promoters.


Assuntos
Metilação de DNA , Proteínas Repressoras , Animais , Humanos , Cromatina/genética , Metilação de DNA/genética , Epigênese Genética , Expressão Gênica , Mamíferos/genética , Neoplasias/genética , Proteínas Repressoras/metabolismo
5.
Nat Struct Mol Biol ; 30(8): 1105-1118, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488355

RESUMO

In mammals, only the zygote and blastomeres of the early embryo are totipotent. This totipotency is mirrored in vitro by mouse '2-cell-like cells' (2CLCs), which appear at low frequency in cultures of embryonic stem cells (ESCs). Because totipotency is not completely understood, we carried out a genome-wide CRISPR knockout screen in mouse ESCs, searching for mutants that reactivate the expression of Dazl, a gene expressed in 2CLCs. Here we report the identification of four mutants that reactivate Dazl and a broader 2-cell-like signature: the E3 ubiquitin ligase adaptor SPOP, the Zinc-Finger transcription factor ZBTB14, MCM3AP, a component of the RNA processing complex TREX-2, and the lysine demethylase KDM5C. All four factors function upstream of DPPA2 and DUX, but not via p53. In addition, SPOP binds DPPA2, and KDM5C interacts with ncPRC1.6 and inhibits 2CLC gene expression in a catalytic-independent manner. These results extend our knowledge of totipotency, a key phase of organismal life.


Assuntos
Fatores de Transcrição , Zigoto , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias/metabolismo , Genoma , Células-Tronco Embrionárias Murinas/metabolismo , Mamíferos/genética
6.
Development ; 150(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37309910

RESUMO

Classical genomic imprints are regulated by parent-specific DNA methylation levels inherited from the gametes in mammals. Imprints control gene expression in a parent-of-origin manner and are essential for development. A distinct class of so-called 'non-canonical' imprints was recently discovered; these are seemingly regulated by histone methylation and govern parent-specific expression of developmentally important genes, most notably in the placenta. This new class of imprinted genes expands the repertoire of asymmetric parental contributions in mammalian embryogenesis, and raises new questions about the functionality of imprinted gene regulation in mammalian development. In this Spotlight, we summarize the latest findings regarding non-canonical imprinting, mainly from the mouse model, and discuss what we know about the conservation of this phenomenon and how it impacts mammalian development.


Assuntos
Metilação de DNA , Embrião de Mamíferos , Animais , Camundongos , Feminino , Gravidez , Modelos Animais de Doenças , Genômica , Células Germinativas , Mamíferos
7.
Genome Biol ; 24(1): 48, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918927

RESUMO

BACKGROUND: Genomic imprinting affects gene expression in a parent-of-origin manner and has a profound impact on complex traits including growth and behavior. While the rat is widely used to model human pathophysiology, few imprinted genes have been identified in this murid. To systematically identify imprinted genes and genomic imprints in the rat, we use low input methods for genome-wide analyses of gene expression and DNA methylation to profile embryonic and extraembryonic tissues at allele-specific resolution. RESULTS: We identify 14 and 26 imprinted genes in these tissues, respectively, with 10 of these genes imprinted in both tissues. Comparative analyses with mouse reveal that orthologous imprinted gene expression and associated canonical DNA methylation imprints are conserved in the embryo proper of the Muridae family. However, only 3 paternally expressed imprinted genes are conserved in the extraembryonic tissue of murids, all of which are associated with non-canonical H3K27me3 imprints. The discovery of 8 novel non-canonical imprinted genes unique to the rat is consistent with more rapid evolution of extraembryonic imprinting. Meta-analysis of novel imprinted genes reveals multiple mechanisms by which species-specific imprinted expression may be established, including H3K27me3 deposition in the oocyte, the appearance of ZFP57 binding motifs, and the insertion of endogenous retroviral promoters. CONCLUSIONS: In summary, we provide an expanded list of imprinted loci in the rat, reveal the extent of conservation of imprinted gene expression, and identify potential mechanisms responsible for the evolution of species-specific imprinting.


Assuntos
Histonas , Muridae , Camundongos , Humanos , Ratos , Animais , Muridae/genética , Muridae/metabolismo , Histonas/metabolismo , Estudo de Associação Genômica Ampla , Metilação de DNA , Impressão Genômica , Alelos
8.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35976266

RESUMO

Mouse embryonic stem cells have an inherent propensity to explore gene regulatory states associated with either self-renewal or differentiation. This property depends on ERK, which downregulates pluripotency genes such as Nanog. Here, we aimed at identifying repressive histone modifications that would mark Nanog for inactivation in response to ERK activity. We found that the transcription factor ZFP57, which binds methylated DNA to nucleate heterochromatin, is recruited upstream of Nanog, within a region enriched for histone H3 lysine 9 tri-methylation (H3K9me3). Whereas before differentiation H3K9me3 at Nanog depends on ERK, in somatic cells it becomes independent of ERK. Moreover, the loss of H3K9me3 at Nanog, induced by deleting the region or by knocking out DNA methyltransferases or Zfp57, is associated with reduced heterogeneity of NANOG, delayed commitment into differentiation and impaired ability to acquire a primitive endoderm fate. Hence, a network axis centred on DNA methylation, ZFP57 and H3K9me3 links Nanog regulation to ERK activity for the timely establishment of new cell identities. We suggest that establishment of irreversible H3K9me3 at specific master regulators allows the acquisition of particular cell fates during differentiation.


Assuntos
Células-Tronco Embrionárias , Endoderma , Código das Histonas , Proteína Homeobox Nanog/genética , Animais , Diferenciação Celular , Endoderma/metabolismo , Genes Homeobox , Camundongos , Proteína Homeobox Nanog/metabolismo
9.
PLoS Genet ; 18(5): e1009782, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604932

RESUMO

The hallmarks of the alveolar subclass of rhabdomyosarcoma are chromosomal translocations that generate chimeric PAX3-FOXO1 or PAX7-FOXO1 transcription factors. Overexpression of either PAX-FOXO1s results in related cell transformation in animal models. Yet, in patients the two structural genetic aberrations they derived from are associated with distinct pathological manifestations. To assess the mechanisms underlying these differences, we generated isogenic fibroblast lines expressing either PAX-FOXO1 paralog. Mapping of their genomic recruitment using CUT&Tag revealed that the two chimeric proteins have distinct DNA binding preferences. In addition, PAX7-FOXO1 binding results in greater recruitment of the H3K27ac activation mark than PAX3-FOXO1 binding and is accompanied by greater transcriptional activation of neighbouring genes. These effects are associated with a PAX-FOXO1-specific alteration in the expression of genes regulating cell shape and the cell cycle. Consistently, PAX3-FOXO1 accentuates fibroblast cellular traits associated with contractility and surface adhesion and limits entry into S phase. In contrast, PAX7-FOXO1 drives cells to adopt an amoeboid shape, reduces entry into M phase, and causes increased DNA damage. Altogether, our results argue that the diversity of rhabdomyosarcoma manifestation arises, in part, from the divergence between the genomic occupancy and transcriptional activity of PAX3-FOXO1 and PAX7-FOXO1.


Assuntos
Proteínas de Fusão Oncogênica , Fatores de Transcrição Box Pareados , Rabdomiossarcoma Alveolar , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Fibroblastos , Proteína Forkhead Box O1/genética , Fatores de Transcrição Forkhead/genética , Humanos , Proteínas de Fusão Oncogênica/genética , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX7/genética , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/genética
11.
Front Cell Dev Biol ; 8: 629068, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490089

RESUMO

Vertebrate genomes are marked by notably high levels of 5-cytosine DNA methylation (5meC). The clearest function of DNA methylation among members of the subphylum is repression of potentially deleterious transposable elements (TEs). However, enrichment in the bodies of protein coding genes and pericentromeric heterochromatin indicate an important role for 5meC in those genomic compartments as well. Moreover, DNA methylation plays an important role in silencing of germline-specific genes. Impaired function of major components of DNA methylation machinery results in lethality in fish, amphibians and mammals. Despite such apparent importance, mammals exhibit a dramatic loss and regain of DNA methylation in early embryogenesis prior to implantation, and then again in the cells specified for the germline. In this minireview we will highlight recent studies that shine light on two major aspects of embryonic DNA methylation reprogramming: (1) The mechanism of DNA methylation loss after fertilization and (2) the protection of discrete loci from ectopic DNA methylation deposition during reestablishment. Finally, we will conclude with some extrapolations for the evolutionary underpinnings of such extraordinary events that seemingly put the genome under unnecessary risk during a particularly vulnerable window of development.

12.
Nat Rev Mol Cell Biol ; 20(10): 590-607, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399642

RESUMO

DNA methylation is of paramount importance for mammalian embryonic development. DNA methylation has numerous functions: it is implicated in the repression of transposons and genes, but is also associated with actively transcribed gene bodies and, in some cases, with gene activation per se. In recent years, sensitive technologies have been developed that allow the interrogation of DNA methylation patterns from a small number of cells. The use of these technologies has greatly improved our knowledge of DNA methylation dynamics and heterogeneity in embryos and in specific tissues. Combined with genetic analyses, it is increasingly apparent that regulation of DNA methylation erasure and (re-)establishment varies considerably between different developmental stages. In this Review, we discuss the mechanisms and functions of DNA methylation and demethylation in both mice and humans at CpG-rich promoters, gene bodies and transposable elements. We highlight the dynamic erasure and re-establishment of DNA methylation in embryonic, germline and somatic cell development. Finally, we provide insights into DNA methylation gained from studying genetic diseases.


Assuntos
Metilação de DNA , Elementos de DNA Transponíveis , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Humanos , Camundongos
13.
Nat Genet ; 49(1): 110-118, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27841881

RESUMO

The potential for early embryonic events to program epigenetic states that influence adult physiology remains an important question in health and development. Using the imprinted Zdbf2 locus as a paradigm for the early programming of phenotypes, we demonstrate here that chromatin changes that occur in the pluripotent embryo can be dispensable for embryogenesis but instead signal essential regulatory information in the adult. The Liz (long isoform of Zdbf2) transcript is transiently expressed in early embryos and embryonic stem cells (ESCs). This transcription locally promotes de novo DNA methylation upstream of the Zdbf2 promoter, which antagonizes Polycomb-mediated repression of Zdbf2. Strikingly, mouse embryos deficient for Liz develop normally but fail to activate Zdbf2 in the postnatal brain and show indelible growth reduction, implying a crucial role for a Liz-dependent epigenetic switch. This work provides evidence that transcription during an early embryonic timeframe can program a stable epigenetic state with later physiological consequences.


Assuntos
Metilação de DNA , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Epigenômica , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Receptores Acoplados a Proteínas G/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Cromatina/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/metabolismo , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética
14.
Cell Discov ; 12015.
Artigo em Inglês | MEDLINE | ID: mdl-26617990

RESUMO

JmjC domain containing protein 14 (JMJ14) is an H3K4-specific histone demethylase that plays important roles in RNA-mediated gene silencing and flowering time regulation in Arabidopsis. However, how JMJ14 is recruited to its target genes remains unclear. Here, we show that the C-terminal FYRN and FYRC domains of JMJ14 are required for RNA silencing and flowering time regulation. Chromatin binding of JMJ14 is lost upon deletion of its FYRN and FYRC domains, and H3K4me3 is increased. FYRN and FYRC domains interact with a pair of NAC domain containing transcription factors, NAC050 and NAC052. Genome-wide ChIP analysis revealed that JMJ14 and NAC050/052 share a set of common target genes with CTTGNNNNNCAAG consensus sequences. Mutations in either NAC052 or NAC050 impair RNA-mediated gene silencing. Together, our findings demonstrate an important role of FYRN and FYRC domains in targeting JMJ14 through direct interaction with NAC050/052 proteins, which reveals a novel mechanism of histone demethylase recruitment.

15.
Proc Natl Acad Sci U S A ; 111(49): 17666-71, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25425661

RESUMO

DNA methylation in Arabidopsis thaliana is maintained by at least four different enzymes: DNA methyltransferase1 (MET1), chromomethylase3 (CMT3), domains rearranged methyltransferase2 (DRM2), and chromomethylase2 (CMT2). However, DNA methylation is established exclusively by the enzyme DRM2, which acts in the RNA-directed DNA methylation (RdDM) pathway. Some RdDM components belong to gene families and have partially redundant functions, such as the endoribonucleases dicer-like 2, 3, and 4, and involved in de novo2 (IDN2) interactors IDN2-like 1 and 2. Traditional mutagenesis screens usually fail to detect genes if they are redundant, as the loss of one gene can be compensated by a related gene. In an effort to circumvent this issue, we used coexpression data to identify closely related genes that are coregulated with genes in the RdDM pathway. Here we report the discovery of two redundant proteins, SNF2-ring-helicase-like1 and -2 (FRG1 and -2) that are putative chromatin modifiers belonging to the SNF2 family of helicase-like proteins. Analysis of genome-wide bisulfite sequencing shows that simultaneous mutations of FRG1 and -2 cause defects in methylation at specific RdDM targeted loci. We also show that FRG1 physically associates with Su(var)3-9-related SUVR2, a known RdDM component, in vivo. Combined, our results identify FRG1 and FRG2 as previously unidentified components of the RdDM machinery.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cromatina/química , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , RNA de Plantas/química , Arabidopsis/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Mutagênese , Mutação , Interferência de RNA , RNA Interferente Pequeno/genética
16.
PLoS Genet ; 9(11): e1003946, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24244201

RESUMO

DNA methylation is an epigenetic mark that is associated with transcriptional repression of transposable elements and protein-coding genes. Conversely, transcriptionally active regulatory regions are strongly correlated with histone 3 lysine 4 di- and trimethylation (H3K4m2/m3). We previously showed that Arabidopsis thaliana plants with mutations in the H3K4m2/m3 demethylase JUMONJI 14 (JMJ14) exhibit a mild reduction in RNA-directed DNA methylation (RdDM) that is associated with an increase in H3K4m2/m3 levels. To determine whether this incomplete RdDM reduction was the result of redundancy with other demethylases, we examined the genetic interaction of JMJ14 with another class of H3K4 demethylases: lysine-specific demethylase 1-like 1 and lysine-specific demethylase 1-like 2 (LDL1 and LDL2). Genome-wide DNA methylation analyses reveal that both families cooperate to maintain RdDM patterns. ChIP-seq experiments show that regions that exhibit an observable DNA methylation decrease are co-incidental with increases in H3K4m2/m3. Interestingly, the impact on DNA methylation was stronger at DNA-methylated regions adjacent to H3K4m2/m3-marked protein-coding genes, suggesting that the activity of H3K4 demethylases may be particularly crucial to prevent spreading of active epigenetic marks. Finally, RNA sequencing analyses indicate that at RdDM targets, the increase of H3K4m2/m3 is not generally associated with transcriptional de-repression. This suggests that the histone mark itself--not transcription--impacts the extent of RdDM.


Assuntos
Proteínas de Arabidopsis/genética , Cromatina/genética , Metilação de DNA/genética , Epigênese Genética , Histona Desmetilases com o Domínio Jumonji/genética , RNA/genética , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Histona Desmetilases/genética , Histonas , Lisina/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos
17.
Cell ; 152(1-2): 352-64, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23313553

RESUMO

Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.


Assuntos
Arabidopsis/genética , Metilação de DNA , Genoma de Planta , Proteínas de Arabidopsis/metabolismo , Ilhas de CpG , Inativação Gênica , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Interferência de RNA , RNA Polimerase II/metabolismo , Fatores de Processamento de RNA
18.
PLoS Genet ; 8(10): e1002995, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071452

RESUMO

In eukaryotic cells, environmental and developmental signals alter chromatin structure and modulate gene expression. Heterochromatin constitutes the transcriptionally inactive state of the genome and in plants and mammals is generally characterized by DNA methylation and histone modifications such as histone H3 lysine 9 (H3K9) methylation. In Arabidopsis thaliana, DNA methylation and H3K9 methylation are usually colocated and set up a mutually self-reinforcing and stable state. Here, in contrast, we found that SUVR5, a plant Su(var)3-9 homolog with a SET histone methyltransferase domain, mediates H3K9me2 deposition and regulates gene expression in a DNA methylation-independent manner. SUVR5 binds DNA through its zinc fingers and represses the expression of a subset of stimulus response genes. This represents a novel mechanism for plants to regulate their chromatin and transcriptional state, which may allow for the adaptability and modulation necessary to rapidly respond to extracellular cues.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas de Arabidopsis/química , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/química , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Dedos de Zinco
19.
Proc Natl Acad Sci U S A ; 109(22): 8374-81, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22592791

RESUMO

At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but does not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metilação de DNA , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Northern Blotting , Western Blotting , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Interferência de RNA , RNA de Plantas/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Homologia de Sequência de Aminoácidos , Transcriptoma/genética
20.
Epigenetics ; 7(1): 29-33, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22274613

RESUMO

Cytosine DNA methylation is an epigenetic mark frequently associated with silencing of genes and transposons. In Arabidopsis, the establishment of cytosine DNA methylation is performed by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2). DRM2 is guided to target sequences by small interfering RNAs (siRNAs) in a pathway termed RNA-directed DNA methylation (RdDM). We performed a screen for mutants that affect the establishment of DNA methylation by investigating genes that contain predicted RNA-interacting domains. After transforming FWA into 429 T-DNA insertion lines, we assayed for mutants that exhibited a late-flowering phenotype due to hypomethylated, thus ectopically expressed, copies of FWA. A T-DNA insertion line within the coding region of the spliceosome gene SR45 (sr45-1) flowered late after FWA transformation. Additionally, sr45-1 mutants display defects in the maintenance of DNA methylation. DNA methylation establishment and maintenance defects present in sr45-1 mutants are enhanced in dcl3-1 mutant background, suggesting a synergistic cooperation between SR45 and DICER-LIKE3 (DCL3) in the RdDM pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Metilação de DNA , Splicing de RNA , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...